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LETTER TO THE EDITOR 

Dynamics of random media: anomalous wave propagation and 
damping near the percolation threshold 

M DaoudiS, F Family? and D C HongtO 
t Department of Physics, Emory University, Atlanta, GA 30322, USA 
$ Laboratoire Lion Brillouin, CEN Saclay, 91 191 Gif-sur-Yvette, France 

Received 14 July 1988 

Abstract. It is shown that a description of the dynamics of random media, consisting of 
a mixture of conductors and dielectrics or of polymers close to the sol-gel transition, 
involves both the conductivity and the superconductivity exponents t and s. The mixing 
of the two exponents is derived explicitly for wave propagation and dissipation close to 
the percolation threshold. At high frequencies propagation and dispersion are equally 
important and the disperison relation, k2 - W O ,  is anomalous and a depends on both t and 
s. At low frequencies there is both propagation and dissipation above and below the 
threshold. 

The dynamic properties of percolation clusters, and fractal structures in general, has 
recently received considerable theoretical [ 1-41 and experimental [ 5-91 attention. 
Much of this activity was prompted by the introduction of the concept of fructons by 
Alexander and Orbach [3], who made the observation that diffusion on fractals is 
anomalous. The importance of this anomalous behaviour lies in the relation between 
diffusion and conduction that was first recognised by de Gennes [ 1,2] in the percolation 
problem. As he pointed out [2,10,11], depending on whether the system is a random- 
resistor network or a random-superconducting network, two different cases must be 
considered. For the random-resistor network [ 10,12,13] the DC conductivity Z goes 
to zero as we approach the percolation threshold from above with a characteristic 
exponent t : 

Z - ( P  - PJ' ( P ' €4. (1) 

Here ( p  - p c )  is the distance to the percolation threshold p c .  In the case of a mixture 
of resistors and superconductors [ll-131 H diverges as we approach pE from below 
with an exponent s: 

Z- ( P c - P ) - s  ( P < P c ) .  (2) 

Because of the Einstein relation between conductivity and diffusion [l], it was then 
possible to define not one, but two, independent diffusion problems, namely the ant 
[1,3,4] and termite [2,14,15] models of conduction. Because these two types of 
diffusion are decoupled from each other, we get two possible dynamics for the systems. 
This decoupling is clearly not a general result. For example, the viscoelastic behaviour 
of randomly branched polymers and gels in their reaction bath may be related to a 
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combination of the random-resistor and the random-superconducting network 
problems [16]. This implies that the two problems must be treated simultaneously. 
Similarly, mixtures of dielectric and metallic materials exhibit non-trivial frequency- 
dependent properties [17]. It seems that for such systems there is a strong coupling 
between both problems and that they should not be considered separately. Indeed, 
we know that very generally they are related to the real and imaginary parts of the 
same response function and are related to each other by the Kramers-Kronig ( K K )  
relations [18]. Recently Laibowitz and Gefen [5] used such a condition for a random- 
resistor network. Consistency then imposes that s = 2 u  - p ,  in disagreement with experi- 
mental results and numerical simulations. The difficulty resides in the moment when 
to introduce the K K  relations. A correct approach has to take into account these 
relations from the start. Thus, even though relations (1) and (2) are valid for DC 

properties, as soon as the frequency is non-zero, the simple diffusion models are not 
longer valid, because both energy dissipation and storage have to be taken into account. 

As a first step in treating both propagation and dissipation in random systems, in 
this letter we report the results of a study of wave propagation close the percolation 
threshold. This might be an elastic wave for a sol or a gel in its reaction bath, or an 
electromagnetic wave in the case of a mixture of dielectric and metallic components. 
We find that propagation is critically slowed down near the threshold, and because of 
the Kramers-Kronig relations between the real and the imaginary parts of the dielectric 
constant, an extremely rich situation occurs in which the dynamics depends on both 
s and t, i.e. the two anomalous transport laws are coupled. At low frequencies below 
the threshold, we find that the group velocity is reduced and vanishes at the percolation 
threshold. 

Let k and w be the wavevector and the frequency of the wave, respectively. One 
may write down the usual dispersion relation [18] 

k 2  = E ( w ) c - * w 2  (3) 

where c is the velocity in the vacuum and E is the complex response function, which 
is the dielectric constant in the case of a dielectric, and is related to the elastic constant 
for a sol (or gel), for scalar elasticity. In the case of a dielectric, 

E ( @ )  = e + i a / w  (4) 

E ( w )  = 7 -iG/w (4') 

and for the case of a sol or gel, 

where i2 = -1, E and a are the real part of the dielectric constant and the conductivity 
of the dielectric, respectively, and 7 and G are the viscosity and the elastic modulus 
of the sol (or the gel), respectively. The complex dielectric constant in the percolation 
case was considered first by Efros and Shklovskii [17] some years ago and studied 
more recently by the Marseille [19] and Schlumberger [20] groups. The basic result 
is that E(w)  close to p c  has the following scaling form [17]: 

( 5 )  

where wo is a characteristic (molecular) frequency, w << wo,  and s and t are defined in 
(1) and (2). For small x, the scaling functionf,(x) reduces to appropriate forms which 
are consistent with (1) and (2). In particular, below p,,f-(x) has the following form: 

E ( w )  = ( P  - p c ) - s f i ( i ( w l w o ) ( p  - p J S - ' )  

f-(x<< 1 ) = 1 + u x +  ... (6) 
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and above pE,  it reduces to 

1 a’ 
x x2 

f + ( x < <  1)=-+-+. . , 

where a and a’ are real constants. In the opposite limit of high frequencies, the 
complex dielectric constant behaves as a power law of w, without any dependence on 
(P-Pc): 

f*(x >> 1) - x - s ’ ( s + f ) .  (7) 

The high-frequency behaviour of the scaling relation (7) was recently discussed by 
Laugier et a1 [ 191 and checked experimentally by Durand et a1 [8] on polymeric systems 
close to the gelation threshold. 

Relation ( 5 )  may be written in a form exhibiting a characteristic time T :  

I ( w )  = ( p  -p,)-%(iwT) ( s a )  

0 0 7 -  ( p  -pC)-”-‘. (8b)  

with 

Several points should be noted at this time. First, the real and the imaginary parts 
of the response function are not independent, but are related by the Kramers-Kronig 
relations. Therefore, the characteristic time of the mixture depends on both the real 
and the imaginary parts, as may be seen from ( 5 )  or (8). The interpretation of this 
time is readily obtained by first combining (3) and (4) to find 

k 2 =  c-2w2(&(w)-ia(w)/w). (9) 

Relations (6), (7) and (9) show that for high and low frequencies two distinct behaviours 
are generally expected. For small w, the solution is propagative and the group velocity 
V(o) is 

V ( w )  = c&(w)-”2 ( U T  >> 1) (10) 

where T is the characteristic time, to be discussed below. For larger frequencies, the 
solution is dispersive. This corresponds to a broadening of the evanescent wave and 
is directly related to the existence and frequency dependence of the conductivity. The 
crossover frequency between the two regimes corresponds to the characteristic time T,  

relation (8), which may also be obtained by combining (2), (6) and (9): 

0 0 T - ( p - p ~ ) - ~ - ~ .  ( 8 b )  

Note that the crossover time depends on both s and t, in agreement with the experi- 
mental results [8]. Keeping only the constant term in relation (6) would lead to a 
propagating wave with constant velocity V without any attenuation, and crossing over 
to a regime with strong damping at frequencies higher than 7 - l .  In fact, even for small 
frequencies, relation (6) shows that there is a finite contribution to a( U ) ,  which implies 
that the penetration depth is finite. 

Let us first consider the high-frequency regime where the response function has a 
power-law behaviour. Using (9, (7) and (9), we find 

( kc)2 - w2(iw/wo)-s’(s+’) (7-’ << 0.l << W O ) .  (11) 
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Setting k = k, + i ki, where k, and ki ,  correspond, respectively, to propagation and 
attentuation, we find k,  = ki, = U'' with a = (s +2f ) /2 ( s+  t ) .  Therefore propagation 
and damping behave in the same way. The real part implies that the group velocity is 

v ( W )  - c ( W / W ~ ) ~ / * ' ~ + ' )  (T-'<< W << W O )  (12) 

(13) D ( W )  - ( W / W o ) - ' / ( s + f )  0 0  - I  c 

These relations show that wave propagation is dramatically slowed down in these 
mixtures. At the same time, if a wavepacket is sent in, its width broadens with a 
dispersion constant D ( w ) .  Both relations (12) and (13) may be checked experimentally. 
It is important to note that, because of (1 l ) ,  propagation and attentuation are of the 
same order of magnitude. Note also that the dispersion constant is inversely propor- 
tional to the conductivity of the medium [ 181. Finally, we can calculate the characteris- 
tic penetration length, 

(14) 

As w is decreased, starting from this high-frequency regime, the anaomalous propaga- 
tion-dispersion is present as long as W T  is larger than unity. For lower frequencies, 
UT<< 1 ,  there is a crossover to other types of behaviour that depend on whether the 
system is below or above the threshold. For p < p c ,  the velocity of the wave is a 
constant. From (10) and (2) we get 

and from the imaginary part, from k 2 -  D(w)w, we define a dispersion constant: 

(T-' << W << W O ) .  

A - v ( W ) / o  - ( D ( w ) / w ) ' / * -  ( w / w ~ ) - ~ ~ + ~ ~ ) / ~ ( ~ + ' )  CW,' .  

v- c ( p  - p c ) s / 2 .  (15) 

V ( W )  - C ( P  - P c ) s / 2 g ( ( 4 W o ) ( p  - p c ) - ) .  (16) 

(T - ( W 2 /  W O )  ( p c  - p ) - 2 s  - ' ( P < P c ,  1). (17) 

Combining (12) and ( 1 9 ,  V ( W )  can be written in the following scaled form: 

Similarly, from (4)-(6) one can determine the conductivity [20] 

The penetration depth A is given by 

A - ( a w ) - ' / *  
(18) 

which diverges as w vanishes, as it should, because the medium is a pure dielectric at 
zero frequency. Equation (18) may also be generalised in a scaled form involving W T  

as the variable. 
For p > p c ,  on the other hand, the medium is a conductor with a conductivity given 

by ( 1 ) .  Thus for low frequencies, A is 

( P > P c ,  1 ) .  (19) 
From the second term in the l /x  expansion of E, equation (67,  the real part of the 
dielectric constant can be determined: 

( P < P c ,  UT<< 1 )  ~ - " - 3 / 2  1/2 (2s+ 1 ) /2  
WO ( P - P c )  

A - ( W ~ ) - ' / 2 , W - ' / 2 ( p - p c ) - f / 2  

E - ( W / W o ) - 2 ( p  -pc)s+2'  ( P > P c ,  WT<< 1 ) .  (20) 

k 2  - ( p - pc)S+2 '  ( P > P c ,  UT<< 1) (21) 

The above result implies that there is propagation no longer: inserting (20) in (3) and 
(4) leads to 

corresponding to the crossover expression for the penetration depth for UT - 1. 
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The above considerations are also applicable to the gelation transition. But, in this 
case it was conjectured by de Gennes [2] that, for scalar elasticity, the real part of the 
modulus G behaves as the conductance above p c  and the viscosity behaves as the 
dielectric constant below p c ,  so that all the laws discussed above are inverted above 
and below p c .  

In summary, we considered the problem of dynamics at the percolation transition 
by studying propagation and dispersion of waves in a random mixture of conductors 
and dielectric materials?. Our main point was that, although the ant and termite models 
of conduction provide a good description of the DC properties of random materials, 
they fail to describe the frequency dependencies for most materials. The difficulty lies 
in the fact that they are usually related to the storage and dissipation of energy and 
are not independent of each other, as is implicitly assumed in the random walk models. 
we found that, at high frequencies, propagation and dispersion are equally important 
and the dispersion relation is anomalous with an exponent that depends on both the 
conductivity exponent t and the superconductivity exponent s, i.e. that the dynamics 
couples dispersion and propagation. The longest relaxation time also depends on both 
s and t. At low frequencies below the threshold, the group velocity is reduced and 
vanishes at the threshold. There is still attenuation, with a penetration length that 
diverges as o +O. The above results are amenable to experimental verification in a 
wide variety of random systems, including mixtures of good and poor conductors and 
branched polymers in the reaction bath near the sol-gel transition. 

The authors are much indebted to S Anderson, H Herrmann and D Platt for discussions 
and comments. MD wishes to thank Emory University for its warm hospitality. This 
research was supported by the Office of Naval Research and the Petroleum Research 
Fund, administered by the American Chemical Society. 
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